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Abstract. An analysis of Deeply Virtual Compton Scattering (DVCS) is made within the colour dipole
model. We compare and contrast two models for the dipole cross-section which have been successful in
describing structure function data. Both models agree with the available cross section data on DVCS from
HERA. We give predictions for various azimuthal angle asymmetries in HERA kinematics and for the
DVCS cross section in the THERA region.

1 Introduction

In this paper we explore the predictions of the colour
dipole model for high energy deeply virtual Compton scat-
tering (DVCS):

γ∗(q) + p(P ) → γ(q′) + p(P ′), (1)

where the first photon has spacelike virtuality q2 = −Q2 <
0, but the second photon is real (q′2 = 0), and hence
transversely polarized. DVCS is a particular example of a
diffractive process

γ∗(q) + p(P ) → X + p(P ′) , (2)

in which the diffractively-produced system, X, is separated
by a rapidity gap from the elastically-scattered proton (at
least for high photon-proton centre-of-mass energies, W ,
i.e. W 2 = (q + P )2 � Q2,M2

X). The first HERA data on
this process is now available [1,2].

The colour dipole model of diffraction [3] provides a
simple unified picture of such diffractive processes and
enables “hard” and “soft” physics to be incorporated in
a single dynamical framework. At high energies, in the
proton’s rest frame, the virtual photon fluctuates into a
hadronic system (the simplest of which is a qq̄ dipole) a
long distance upstream of the target proton. The forma-
tion time of this hadronic system, and of the subsequent
formation of the hadronic final state, is much longer than
the interaction time with the target. It is this observation
that leads to the main (plausible) assumption of the colour
dipole model, i.e. that the interaction of a given fluctua-
tion with the target is independent of how it is formed,
and is therefore universal. It leads to the following generic
factorization of the amplitudes of high energy diffractive
processes:

A(γ + p → Xp) =
∫
ψin

γ σ̂ ψout
X (3)

where σ̂ is the interaction cross section of a given configu-
ration with the target and the integral runs over the phase
space describing the incoming and outgoing hadronic sys-
tems. For the case of dipole scattering, one must integrate
over dipole configurations (longitudinal momentum frac-
tions and transverse sizes). We know of no formal proof of
this type of high-energy factorization, whether applied to
dipoles or more complicated configurations. Nevertheless,
within this common framework there are many different
formulations for the interaction cross section σ̂ [4]–[11],
which have been applied with varying degrees of success1.
Here we consider two particular dipole models [6,9] which
have both been successful in describing structure function
data, but which at first sight differ quite drastically in
their structure and implications; and compare their pre-
dictions for DVCS.

An additional assumption of most dipole models of
diffraction is that the scattering with the target is diag-
onal with respect to the appropriate variables (i.e. trans-
verse sizes, momentum fractions and polarizations are un-
changed by the interaction). For the case of DVCS this
implies that the incoming photon must be transversely
polarized in order to respect s-channel helicity conserva-
tion.

DVCS is a good probe of the transition between soft
and hard regimes in the dipole model for two reasons.
Firstly, the transverse photon wave function can select
large dipoles, even for large Q2, and certainly for the Q2

range 2 < Q2 < 20 GeV2 for which data is now available
[2]. Secondly, because the final photon is real, DVCS is
more sensitive to large dipoles than DIS at the sameQ2, as
we shall illustrate quantitatively in Sect. 3. In addition, for
Q2 → 0, the process reduces to real Compton scattering
and the cross-section can be reliably inferred from real
photo-absorption data, where soft physics dominates.

1 For a recent overview, see [12]
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We stress the potential importance of well-founded
dipole descriptions in providing reliable starting points
for exploiting DGLAP evolution properties at “large” Q2.
From the theoretical point of view, DVCS is the best un-
derstood of all exclusive diffractive processes, essentially
because the X system is just a real photon. Indeed, a per-
turbative QCD factorisation theorem has been explicitly
proven as Q2 → ∞ [13] which enables the QCD ampli-
tude to be described by a convolution in momentum frac-
tion of generalised (or skewed) parton distributions [14]
(GPDs) with hard coefficient functions. GPDs correspond
to Fourier transforms of operator products evaluated be-
tween proton states of unequal momenta (cf. (2)). They
are therefore generalizations of the familiar parton dis-
tributions of deep inelastic scattering, and like them sat-
isfy perturbative evolution equations [15–18] which enable
them to be evaluated at all Q2 in terms of an assumed in-
put at some appropriate Q2 = Q2

0. In practice, to compare
with experimental results at finite Q2 one must establish
a regime in Q2 in which the higher twist corrections (see
e.g. [19,20]) to this leading twist result are numerically
unimportant. This is a very difficult task in general but
early indications are that the minimum Q2 values defin-
ing this regime are considerably higher than in inclusive
cross sections, for which values as low as Q2

0 = 1 GeV2, or
even lower, have been used. Since the contributions from
different transverse sizes are manifest in the dipole model
one may realistically hope to gain insight into this ques-
tion by investigating DVCS in the dipole framework. As
such a dipole analysis of DVCS provides a complemen-
tary description to the formal QCD analysis, applicable
at “large” Q2. Any insight gained regarding the mixture
of soft and hard physics within the dipole model frame-
work, can also be employed in those processes for which
factorization theorems have not been proven.

Frankfurt, Freund and Strikman [21] have given a lead-
ing order QCD analysis of DVCS. The resulting predic-
tions for the DVCS amplitude at t = 0 are in agreement
with the recent H1 measurements [2] of the total DVCS
cross-section, assuming an exponential t-dependence with
a reasonable value of the slope parameter. The GPDs are
evolved from an input value Q2

0 = 2.6 GeV2, where the in-
put GPDs are obtained by estimating their ratio to “ordi-
nary” parton distribution functions (PDFs) using a simple
aligned jet model2. While this provides a reasonable first
estimate, it is clearly subject to uncertainties which will
become important when more accurate data are available.

Recently NLO QCD analyses of DVCS have been com-
pleted [18,23–25] which use as input GPDs Radyushkin’s
model [26] based on Double Distributions proportional to
PDFs (which automatically impose the correct symmetry
properties in the so-called “ERBL region”). The colour
dipole model offers a means of estimating these distribu-
tions at the input scale in the DGLAP region, in a com-
plementary and well-founded framework, which can accu-
rately describe both virtual Compton scattering and other
closely related data over a wide range of Q2. This is possi-

2 For further discussion of this approximation, see [22] and
the original paper [21]
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Fig. 1. The colour dipole model for the elastic process γ∗p →
γ∗p(DIS), and virtual Compton scattering γ∗p → γp

ble because at leading-log accuracy in Q2, the amplitude
is approximately equal to the GPD, at a particular point.
In this paper we compute predictions for the cross section
of (1), and for various azimuthal angle asymmetries for the
associated lepton process [27] which are sensitive to both
the real and imaginary parts of the DVCS amplitude.

The structure of the paper is as follows: in Sect. 2 we
summarize and compare our two dipole models in the con-
text of deep inelastic scattering; we then discuss their ap-
plication to virtual Compton scattering process in Sect. 3;
compute various observables in Sect. 4 and summarize our
results and conclusions in Sect. 5.

2 The colour dipole model

Singly dissociative diffractive γp processes (cf. (2)) are
conveniently described in the rest frame of the hadron,
in which the incoming photon dissociates into a qq̄ pair a
long distance, typically of order of the “coherence length”
1/Mx, from the target proton. Assuming that the result-
ing partonic/hadronic state evolves slowly compared to
the timescale of interaction with the proton or nuclear tar-
get, it can be regarded as frozen during the interaction. In
the colour dipole model, the dominant states are assumed
to be qq̄ states of given transverse size, dT . Specifically

|γr〉 =
∫

dz d2dT ψ
γ
r (z, dT , Q

2) |z, dT , 〉 + . . . , (4)

where z is the fraction of light cone energy carried by the
quark and ψγ

r (z, dT , Q
2) is the light cone wave function

of the photon of polarization r = T,L. Assuming that
these dominant states are scattering eigenstates (i.e. that
z, dT and the quark helicities, which are left implicit in
the above equation, remain unchanged in diffractive scat-
tering) the elastic scattering amplitude for γ∗p → γ∗p is
specified by Fig. 1. This leads via the optical theorem to

σγ∗p
T,L =

∫
dzd2dT |ψγ

T,L(z, dT , Q
2)|2σ̂(s∗, dT , z) , (5)

for the γ∗p total cross-section in deep inelastic scattering,
where σ̂(s∗, dT , z) is the total cross-section for scattering
dipoles of specified (z, dT ) which do not change in the in-
teraction (the second line then follows from orthogonality
and the variable s∗ will be specified shortly).

The dipole cross-section is usually assumed to be
flavour independent and “geometric”, i.e. independent of
z. Beyond this the models fall into two main classes.
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In the first, the dipole cross-section is assumed to de-
pend solely on the properties of the dipole-proton system
itself, implying the choice s∗ = W 2. Other singly diffrac-
tive photo-processes involve exactly the same dipole cross-
section, but different wavefunction factors depending on
the final state, as we shall see below for virtual Compton
scattering.

The second type is more closely connected with hard
perturbative QCD predictions for the interaction cross
section, which for small x and high Q2 involve two glu-
ons being exchanged. For hard scattering, small dipoles
are connected via two parton lines to the proton. The in-
teraction cross section then depends on the momentum
fractions of the proton carried by the parton lines, i.e.
s∗ = xBj = Q2/W 2, or s∗ = x′ ≈ xBj . In this case the
dipole cross-section must be slightly modified when apply-
ing it to different processes, since GPDs of the appropriate
kinematics must be used, as discussed below.

In the rest of this section, we shall briefly summarize
the properties of one model of each type, after first con-
sidering the other main ingredient in (5), i.e. the photon
wavefunction.

2.1 The photon wavefunction

Because the proton structure function, F2, is predomi-
nantly transverse, both small and large dipoles contribute
significantly to F2 over a wide range of Q2, where “large”
means transverse sizes of order dT ≈ 1 fm. With this
caveat, it is none the less useful to consider two quali-
tatively different regimes.

For small dipoles, it is reasonable to assume “QED
wavefunctions,” ψγ

T,L = ψ0
T,L calculated3 from the usual

QED vertex −ieγµ. Explicitly

|ψ0
L(z, dT , Q

2)|2 =
6
π2αe.m.

×
nf∑
q=1

e2qQ
2z2(1 − z)2K2

0 (εdT ) (6)

|ψ0
T (z, dT , Q

2)|2 =
3

2π2αe.m.

×
nf∑
q=1

e2q

{
[z2 + (1 − z)2]ε2K2

1 (εdT ) +m2
qK

2
0 (εdT )

}
(7)

where

ε2 = z(1 − z)Q2 +m2
q ,

K0 and K1 are modified Bessel functions and the sum
is over quark flavours. Furthermore, for the large Q2 val-
ues where small dipoles dominate, these wavefunctions be-
come insensitive to the quark mass. In this regime, the
wavefunctions are essentially known.

For small Q2 < 4m2
q, the QED wavefunctions become

sensitive to the squared quark massm2
q. At the same time,

3 For an explicit derivation, see Appendix A of [28]
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Fig. 2. The weight function H(dT ) for different Q2 corre-
sponding to the photon wavefunction obtained by FKS [6] with
m2

q = 0.08 GeV2. The peak at low Q2 represents the modifi-
cation to the perturbative photon wave function, with (dashed
line) and without (solid line) the enhancement factor (9) at
large dT

large dipoles, for which one would expect significant con-
finement corrections, become very important. The wave-
function is clearly model dependent in this region.

Both of the models discussed in this paper assume that
the dipole cross-section becomes “hadron-like” for dT ≈ 1
fm, with an energy dependence characteristic of the “soft
Pomeron”. In choosing the wavefunction in this region,
FKS [6] were motivated by the work of Frankfurt, Guzey
and Strikman [29]. These authors analyzed the distribu-
tion of scattering eigenstates in a non-diagonal general-
ized vector dominance model [30] which provides a good
description of the soft Pomeron contribution to the nu-
cleon structure function F2 on both protons and nuclei
[31]. They found a distribution of states which was quali-
tatively similar to that obtained in a colour dipole model
with a perturbative wavefunction, but with an enhanced
contribution from dipole cross-sections of hadronic size. In
the light of this, FKS chose m2

q = 0.08 GeV2 correspond-
ing roughly to a constituent mass for the light quark case;
and modified the QED wavefunction by multiplying by an
adjustable Gaussian enhancement factor:

|ψT,L(z, dT , Q
2)|2 = |ψ0

T,L(z, dT , Q
2)|2 f(dT ) (8)

where

f(dT ) =
1 +B exp(−c2(dT −R)2)

1 +B exp(−c2R2)
. (9)

This form enables the width and height of the enhance-
ment to be controlled independently while keeping a factor
of close to unity at small dT . The effect of this is conve-
niently summarized by integrating out the angular and z
dependence in (5) to give

σγ∗p
tot =

∫
dz d2dT (|ψT (z, dT )|2 + |ψL(z, dT )|2)σ̂(s, dT )

=
12
π
αe.m.

∫
ddTH(dT )σ̂(s, dT ) . (10)
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Fig. 3. The weight function H(dT ) for various Q2 corre-
sponding to photon wavefunctions of perturbative form for
m2

q = 0.08 GeV2 (solid lines) and m2
q = 0.02 GeV2 (dotted

lines)

Table 1. Parameters for the FKS model specified by (8, 11),
in appropriate GeV based units throughout

λS 0.06± 0.01 λH 0.44± 0.01

aS
0 30.0(fixed) aH

2 0.072± 0.010

aS
4 0.027± 0.007 aH

6 1.89± 0.03

νH 3.27± 0.01

B 7.05± 0.08 c2 0.20(fixed)

R 6.84± 0.02
m2

q 0.08(fixed) m2
c 1.4(fixed)

The resulting behaviour of H(dT ) for the final parameter
values (see below) is shown in Fig. 2: as can be seen, the
enhancement is important for very low Q2, but decreases
rapidly as Q2 increases. Other authors do not in general
include an explicit enhancement factor, but achieve a sim-
ilar effect, at least for Q2 > 1 GeV2, by varying the quark
mass. Choosing a smaller quark mass increases the wave-
function at all large dT , as illustrated in Fig. 3. Golec-
Biernat and Wusthoff [5], for example, used m2

q = 0.02
GeV2, comparable with the pion mass squared.

For our second model, the MFGS model [9], this ques-
tion is less important, since results are only presented
for Q2 > 1 GeV2; and results are presented for m2

q =
0.08 GeV2 without the confinement factor of (9). In both
models, a charmed quark contribution has also been in-
cluded, which only differs from the up quark contribution
by the quark mass mc = 1.4 GeV.

Given this uncertainty in the wavefunction, it is clear
from (5) that the dipole cross-section at large dT ≈ 1
fm cannot be inferred, even in principle, from structure
function and real photo-absorption data alone. Other in-
formation must also be used.

2.2 The FKS model

This model [6] belongs to the class in which the dipole
cross-section is assumed to depend solely on the proper-
ties of the dipole-proton system itself, implying the choice
s∗ = W 2 independent of the virtuality of the incoming
(or outgoing) photon. The idea was then to extract infor-
mation on the dipole cross-section by assuming a reason-
able but flexible parametric form to fit structure function
and real photoabsorption data in the diffractive region
x ≤ 0.01 for 0 ≤ Q2 < 60 GeV2. This was implemented
by assuming a sum of two terms

σ̂(W 2, dT ) = σ̂soft(W
2, dT ) + σ̂hard(W

2, dT ) , (11)

each with a Regge type energy dependence on the dimen-
sionless energy variable d2TW

2:

σ̂soft(W
2, dT ) = aS

0

(
1 − 1

1 + aS
4 d

4
T

)
(d2TW

2)λS (12)

σ̂hard(W
2, dT ) = (aH

2 d
2
T + aH

6 d
6
T )

× exp(−νHdT )(d2TW
2)λH . (13)

These functions were chosen4 so that for small dipoles the
hard term dominates yielding a behaviour

σ̂ → aH
2 d

2
T (d2TW

2)λH dT → 0

in accordance with colour transparency ideas. For large
dipoles the soft term dominates with a hadron-like be-
haviour

σ̂ ≈ aS
0 (d2TW

2)λS dT ≈ 1 fm.

The values λS ≈ 0.06, λH ≈ 0.44 resulting from the fit are
characteristic of the soft and hard Pomeron respectively,
but the fits could be obtained for a range of values for the
parameter aS

0 because of the uncertainty in the photon
wavefunction at large dT discussed above. This ambiguity
can be resolved by using the same dipole cross-section
to calculate the structure function, FD(3)

2 (x,Q2,M2
X), for

diffractive deep inelastic scattering (DDIS)

γ∗ + p → X + p (14)

and a subsequent paper [7] showed that good agreement
was found for aS

0 ≈ 30 GeV−2. The parameter values for
this fit are given in Table 1 and the resulting behaviour
of the dipole cross-section as a function of dT is shown
in Fig. 4 for three energies, including W = 75 GeV cor-
responding to the mean energy of the virtual Compton
scattering data [2] to be discussed below.

One feature of the FKS model is that, in its present
form, it does not include “gluon saturation” or “unitarity
corrections” which are expected to eventually damp the
rapid rise with energy of the dipole cross-section for small
dipoles. Its success implies that such effects are not nec-
essarily required in the HERA region. However, by exam-
ining the predicted behaviour of the dipole cross-section,

4 In [6] a more complicated parametric form was used, but
this simpler parametric form gives very similar results
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Fig. 4. The FKS dipole cross section at W = 10, 75, 300 GeV
(dashed, solid and dotted lines, respectively)
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Fig. 5. The Donnachie-Dosch dipole cross section [11] at W =
75 GeV (dashed line) and W = 300 GeV (dotted line). The
FKS dipole cross-section atW = 75 GeV (solid line) is included
for comparison

the authors have argued [8] that saturation effects will be-
gin to play a role at the top of the HERA range and will
rapidly become important above it. This is illustrated in
Fig. 4, which shows that the rapidly rising dipole cross-sec-
tion at small dT , where the hard term dominates, reaches
hadronic sizes at the top of the HERA range W ≈ 300
GeV.

Finally, for completeness, in Fig. 5 we compare the
FKS dipole cross-section with that used in a recent anal-
ysis of DVCS by Donnachie and Dosch [11]. This model
associates dipoles whose sizes are less than (or greater
than) a certain critical size with a fixed power energy de-
pendence corresponding to the hard (or soft) Pomeron re-
spectively5. For dipoles whose transverse size is less than
about 0.8 fm, the resulting behaviour is not unlike the
FKS dipole cross-section at W = 75 GeV, which is the
mean energy of the data, and the model gives a good ac-
count of H1 data in this region. However at higher energies
the model develops a rather artificial dependence on the
dipole size: as can be seen from the dotted curve in Fig. 5
for W = 300 GeV, the dipole cross section not only does
not increase monotonically with dipole size, but develops a

5 In contrast the FKS model has both hard and soft compo-
nents for all sizes, but in smoothly varying amounts

large discontinuity at the matching point (d⊥ ≈ 0.3 fm).
The other obvious difference is that the cross-section is
much larger than the FKS cross-section at large dT . How-
ever for DIS this can be compensated by differences in the
photon wave-function, which is uncertain in this region, as
noted at the end of Sect. 2.1. FKS resolved this ambiguity
by considering the DDIS reaction of (14), which is more
sensitive to large dipoles and involves a strikingly different
combination of wavefunction and cross-section. It would
be interesting to see the predictions of the Donnachie-
Dosch model for this reaction.

2.3 The MFGS model

This model [9,10] is directly based on the known behaviour
of hard small-x QCD processes, i.e. that they are driven
by the gluon distribution at small x. Using the phenomena
of colour transparency, it directly relates the dipole cross-
section at small dT to leading order (LO) gluon distribu-
tions at large Q2. To leading order in lnQ2, and within
the small x limit, the total photon-proton cross-sections
are given by expressions of the form (5) with a QED wave-
function and a dipole cross-section6

σ̂pQCD(x, dT ) =
π2d2T

3
αs(Q̄2)xg(x′, Q̄2) , (15)

where xg(x′, Q̄2) is the LO gluon distribution of the pro-
ton. At leading log it is sufficient to choose x′ = x and
Q̄2 = Q2. However in the MFGS model (specified fully
in [9]) an attempt to go beyond leading log was made
by introducing dT -dependence into the scales, x′ and Q̄2.
For the four momentum scale Q̄2, the phenomenological
relation

Q̄2 =
λ

d2T
(16)

was assumed where λ = 〈d2T 〉Q2. A theoretical procedure
for defining 〈d2T 〉 using the integral in dT for FL in [33] gave
a value of λ ≈ 10. This value was used in [9], but it was
later discovered that the inclusive cross sections are rather
insensitive to its precise value in the range λ = 4−15 and
that the lower value of λ = 4 appears to be favoured by
the J/ψ-photoproduction data [10]. We adopt this lower
value in what follows. The momentum fraction required
to create a quark-antiquark pair of mass M2

qq̄ = (k2
T +

m2
q)/(z(1 − z)) is

x′ =
M2

qq̄ +Q2

Q2 +W 2 ; (17)

since kT is Fourier conjugate to dT the following relation-
ship was adopted [9] for a dipole of given transverse size
dT :

x′ = x

[
1 + 0.75

λ

d2T (Q2 + 4m2
q)

]
. (18)

6 This formula is implicit in most perturbative two gluon
models. For an explicit derivation see [32]
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Fig. 6. The MFGS dipole at W = 10, 75, 300 GeV (dotted,
solid and dashed lines, respectively) at fixed Q2 = 1 GeV2,
corresponding to x ≈ 10−2, 2.10−4 and 10−5, respectively

The dipole cross-section was then evaluated using the
CTEQ4L gluon distributions [34] for a region dT ≤ dT,c

in which (15) is appropriate, where the boundary dT,c is
specified below. For large dipoles dT ≥ dT,π = 0.65 fm,
the form

σ̂(dT > dT,π) = σ̂(πP )
3 d2T

2 d2T + d2T,π

(x0

x

)0.08
, (19)

with an x-dependence characteristic of soft Pomeron ex-
change, is used, where x0 = 0.01 and the value at dT =
dT,π , x = x0 is matched to the pion-proton total cross-
section, σ(πP ) = 24 mb. In the intermediate region dT,c <
dT < dT,π, the dipole cross-section was linearly interpo-
lated between the boundary values at dT,c and dT,π.

For moderate x, the point dT,c is set by the boundary
of the perturbative region in dT : dT,c = dT,0 ≡

√
λ/Q2

0 =
0.246 fm, for Q0 = 1.6 GeV which is the starting scale for
the CTEQ4L partons (below this scale they are not de-
fined). The resulting dipole cross-section for Q2 = 1 GeV2

is shown in Fig. 6 for various values of W .
At small enough x, as a result of the rising gluon den-

sity, the small dipole cross section increases faster than
the large dipole one and soon reaches hadronic size (tens
of mb). This threatens to spoil the monotonic increase of
σ̂ with dT . To prevent this the MFGS model implements
taming corrections that guarantee that the small dipole
cross section cannot reach more than half its value at dT,π.
This constraint implies a dT,c that shifts to increasingly
small dT . This correction is not crucial in the HERA re-
gion for λ = 4, but does becomes important above it.

The parameters of the model are not adjusted to fit
data, but nonetheless good semi-quantitative accounts of
the deep inelastic scattering [9] and J/ψ photoproduc-
tion data [10] were obtained. For exclusive diffractive pro-
cesses, such as vector meson production or DVCS, it is
necessary to include GPDs, parameterized in terms of
skewedness, δ, x′ and Q̄2, rather than the ordinary ones
used in (15). For DVCS, δ = xBj = Q2/2P.q. To imple-
ment leading order GPDs, we adapted the skewed evolu-
tion package developed by Freund and Guzey [35], using

the CTEQ4L gluon distributions [34] as input to the LO
skewed evolution.

The model focuses on small dipoles, and while the be-
haviour for large dipoles is a sensible guess, no detailed
attempt to resolve the intrinsic ambiguity in the wave-
function and cross-section for large dipoles discussed ear-
lier has been made. In what follows we shall restrict this
model to Q2 > 1 GeV2, where one is relatively insensitive
to this region due to the smallness of the wavefunction.

3 Virtual Compton scattering

In the colour dipole model, virtual Compton scattering is
again given by Fig. 1, but with a real photon in the final
state, leading to

Im ADVCS(W 2, Q2, t = 0) (20)

=
∫
dz d2dT ψ

∗
T (z, dT , Q

2)σ̂(s∗, z, dT ) ψT (z, dT , 0) ,

for the imaginary part of the DVCS amplitude at zero mo-
mentum transfer. Thus, our dipole models yield no-free-
parameter predictions for this process. In this section we
compare the predicted behaviours of the amplitude in the
two models, leaving the comparison between predictions
and experiment to Sect. 5.

We start by comparing the contributions to the ampli-
tude arising from dipoles of different size. To do this we
perform the angular and z integrations to rewrite (20) in
the form

Im A(W 2, Q2, t = 0) = 2π
∫

ddT p(dT , s,Q
2) , (21)

where the profile function

p(dT , s
∗, Q2) (22)

=
∫
dz dT ψ

∗
T (z, dT , Q

2) σ̂(s∗, z, dT )ψT (z, dT , 0) ,

gives the relative contributions arising from dipoles of dif-
ferent size dT . The results are shown for both models at
the mean energy, W = 75 GeV, of the H1 data in Figs. 7,
8. As Q2 increases, the profile shifts to smaller dT . The
FKS model has a larger contribution from large dipoles
than the MFGS model, although the forward amplitudes,
obtained by integrating over all transverse sizes, are sim-
ilar over a wide range of W and Q2, as we shall see.

It is also interesting to compare (22) to the correspond-
ing profile function

p̃T (dT , s
∗, Q2) =

∫
dz dT ψ

∗
T (z, dT , Q

2)

×σ̂(s∗, z, dT ) ψT (z, dT , Q
2) , (23)

for the forward Compton scattering amplitude in which
both transverse photons have the same Q2, which is re-
lated by the optical theorem to the transverse cross-sec-
tion in DIS. The characteristic behaviour differences ob-
served between DIS and DVCS are illustrated in Figs. 9
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Fig. 7. Profile in transverse dipole size for Q2 = 1 GeV2

and W = 75 GeV, employing the FKS (solid line) and MFGS
(dashed line) models for the dipole cross section
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Fig. 8. Profile in transverse dipole size for Q2 = 10 GeV2

and W = 75 GeV, employing the FKS (solid line) and MFGS
(dashed line) models for the dipole cross section

and 10, using the FKS dipole model. For Q2 = 0 the two
profiles are obviously identical, and for all Q2 they become
identical for small dT , since to leading order in 1/dT , the
transverse wavefunction

|ψ0
T (z, dT , Q

2)|2 → 3
2π2αe.m.

nf∑
q=1

e2q
z2 + (1 − z)2

d2T
(24)

independent of Q2. However, as can be seen, when Q2

increases the large dipoles are less suppressed in the DVCS
case than in the DIS case, so that the former is the “softer”
process at any given Q2.

Returning to DVCS, the imaginary part of the ampli-
tude is trivially obtained by integrating (21) over all dT . In
the FKS model we have a sum of two Regge contributions,
and the real part is easily computed from the correspond-
ing signature factors; for the MFGS model, results were
obtained using dispersion relations, as in [10]. The results
for real and imaginary parts, using both models, are plot-
ted as a function of W in Fig. 11 at the mean Q2 of the
H1 data, and the ratio is plotted in Fig. 12. We extend
the energy range out to the THERA range (see e.g. [36])
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Fig. 9. Comparison of the profile functions of (22, 23) for
DVCS (solid line) and transverse DIS (dot-dash line) respec-
tively at Q2 = 1 GeV2 and W = 75 GeV, employing the FKS
model for the dipole cross section
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Fig. 10. Comparison of the profile functions of (22, 23) for
DVCS (solid line) and for transverse DIS (dot-dash line) at
Q2 = 10 GeV2 and W = 75 GeV, employing the FKS model
for the dipole cross section

and one can clearly see that the FKS model has a steeper
energy dependence at very high energies.

Finally, in our introduction we noted that in [21], the
ratio

R ≡ Im A(γ∗N → γ∗N)t=0

Im A(γ∗N → γN)t=0
(25)

of the imaginary parts of the forward amplitudes for DIS
and DVCS was estimated at the input Q2 = 2.6 GeV2

using a simple aligned jet model, in order to infer the
input generalized parton distributions for QCD evolution.
Explicitly, this model gives [21]

R =
Q2

Q2 +M2
0

ln−1(1 +Q2/M2
0 ) (26)

where M2
0 is estimated to be in the range 0.4 - 0.6 GeV2.

The predictions of our models are compared with (26)
in Fig. 13, suggesting somewhat larger values at Q2 =
2.6 GeV2, as can be seen.
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Fig. 11. Real and imaginary parts of the DVCS amplitude for
the FKS (solid lines) and MFGS (dashed lines) dipole models
for Q2 = 4.5 GeV2
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Fig. 12. The ratio, β, of the real to imaginary parts of the
DVCS forward amplitude at Q2 = 4.5 GeV2: FKS (solid line);
MFGS (dashed line); and FKS at Q2 = 0 GeV2 (dotted line)

4 The lepton level process

4.1 Definition of the DVCS cross section

Virtual Compton scattering is accessed experimentally
through the leptonic process:

e±(k) + p(P ) → e±(k′) + p(P ′) + γ(q′) (27)

where the four momenta of the incoming and outgoing
particles are given in brackets. As well as DVCS, the Bethe-
Heitler process (BH), in which the photon is radiated by
the initial or final state lepton, also contributes. On in-
tegrating over the azimuthal angle (defined below), the
interference term between the two processes vanishes in
the limit of large Q2, and the differential cross-section can
be written as:

d2σ

dydQ2 =
d2σDV CS

dydQ2 +
d2σBH

dydQ2 ,

where y ≡ (k − k′) · P/(k · P ) and Q2 = −(k − k′)2.
For DVCS, Q2 is the magnitude of the virtuality of the
(spacelike) virtual photon and, in the proton’s rest frame,
y is the fraction of the incoming electron energy carried
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Fig. 13. The ratio of the forward amplitudes for DIS and
DVCS (cf. (25)) at W = 75 GeV: FKS (solid line); MFGS
(dashed line); and the prediction of (26) for M2

0 = 0.6 GeV2

(dotted line) and M2
0 = 0.4 GeV2 (dot-dashed line), respec-

tively

by the virtual photon. Neglecting the lepton and proton
masses we have y ≈ (Q2 +W 2)/S, where S = (k + p)2 is
the square of the lepton-proton centre-of-mass energy. The
Bethe-Heitler contribution is essentially known in terms of
the Dirac and Pauli form factors (see e.g. (18, 27) of [27])
and can be easily calculated and subtracted from the total
to leave

d2σDV CS

dydQ2 =
αe.m.

2πQ2y
[1 + (1 − y)2] σ(γ∗p → γp) . (28)

Making a trivial change of variable from y to W =√
(k − k′ + P )2 yields:

d2σDV CS

dWdQ2 =
αe.m.

πQ2W
[1 + (1 − y)2] σ(γ∗p → γp) . (29)

We now have a convenient form for comparing to the data
on σ(γ∗P → γp) which is binned in Q2 and W . Assuming
the usual exponential dependence in t = (p− p′)2 < 0, i.e.
eBt, the total γ∗ − p cross section is given by:

σ(γ∗p → γp) =
1
B

dσ

dt

∣∣∣∣
t=0

, (30)

where, with our definition for ADV CS ,

dσ

dt

∣∣∣∣
t=0

=
(ImA)2

16π
(1 + β2) (31)

and β is the ratio of the real to the imaginary part of the
forward virtual Compton scattering amplitude A at t = 0.

4.2 Definitions of asymmetries

A unique and attractive feature of DVCS is the inter-
ference with the Bethe-Heitler process which offers the
rare chance to isolate both real and imaginary parts of
the diffractive amplitude via azimuthal angle asymme-
tries [27]. These asymmetries are conveniently discussed
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in a special frame [19] with the proton at rest such that
the direction of the vector q ≡ k − k′ defines the negative
z-axis. Without loss of generality we can choose the in-
coming electron to have only a non-zero component along
the positive x-axis in the transverse (x− y) plane. In this
frame we have the following four-vectors:

k = (k0, k0 sin θe, 0, k0 cos θe),
q = (q0, 0, 0,−|q3|) (32)

P = (M, 0, 0, 0), (33)
P ′ = (P ′

0, |P′| cosφ sin θH , |P′| sinφ sin θH , |P′| cos θH),

where the angle of interest, φ, is the azimuthal angle be-
tween the lepton (x− z) and hadron scattering planes.

The motivation for using this frame is that the frame-
dependent expression for the u−channel BH lepton prop-
agator has a particularly simple Fourier expansion in the
angle φ. In [27] a slightly different frame is used and an
explicit expression for the u−channel propagator is given,
up to terms of order O(1/Q3) (cf. (21) of [27]):

(k − q′
)2 = − (1 − y)Q2

y

(A0 +A1 cosφ+A2 cos 2φ+ · · · ) , (34)

where

A0 = 1 − t

Q2

(
1
2

+
(1 − x)(1 − 2 tmin/t)

(1 − y)
)
,

A1 = 2
√ −t
Q2

√
(1 − tmin/t)(1 − x)

(1 − y) . (35)

In the frame used here [19] the Fourier series terminates
at cosφ (An = 0, n ≥ 2). We explicitly include factors
of 1/(A0 + A1 cosφ) as appropriate in our numerical re-
sults. We use a code written for [24] which approximately
implements (18) and (24,27,30) of [27] (the latter neglect
terms of O(1/Q), i.e. they use A0 = 1 and A1 = 0). The
code includes the above expansion of the u− channel BH
lepton propagator in our frame (taking its full φ and y-
dependence into account, up to corrections of O(1/Q3)).
The asymmetries of interest involve the quadruple differ-
ential cross section on the lepton level

dσDV CS+BH =
dσ(4)(ep → epγ)
dxdQ2dtdφ

.

In order to proceed it was necessary to convert our am-
plitude (cf. (20)) to the dimensionless unpolarized helicity
non-flip amplitude, H1, appearing in (24,27,30) of [27],
since at small x and moderate t the contributions of the
polarized, H̃1, Ẽ1, and unpolarized helicity-flip, E1, DVCS
amplitudes are negligible. Assuming a simple exponential
t−dependence on the amplitude level the conversion factor
is:

H1 = exp(Bt/2)
W 2

4παe.m. �hcA
dipole (36)

where W is in units of GeV, so the standard conversion
factor �hc = 0.389 GeV2 mb is necessary to make H1 di-
mensionless.

Using the special frame defined above to specify the
azimuthal angle, the asymmetries are defined as follows
(see also [24]):
– The (unpolarized) azimuthal angle asymmetry (AAA),

measured in the scattering of an unpolarized probe on
an unpolarized target, is defined by

AAA =
{( ∫ π/2

−π/2
dφ(dσDV CS+BH − dσBH)

−
∫ 3π/2

π/2
dφ(dσDV CS+BH − dσBH)

)/
( ∫ 2π

0
dφ(dσDV CS+BH − dσBH)

)}
(37)

where dσBH is the pure BH term. The above approx-
imation for the u−channel BH propagator leads to a
non-trivial φ−dependence of the pure BH term. To
directly access the DVCS amplitudes, via the interfer-
ence term, we define AAA with this piece subtracted.
Note that with this “subtracted definition” the magni-
tude of AAA may become greater than unity in certain
regions.

– The single spin asymmetry (SSA), measured in the
scattering of a longitudinally polarized probe on an
unpolarized target, is defined by

SSA =

∫ π

0 dφ∆σ
DV CS+BH − ∫ 2π

π
dφ∆σDV CS+BH∫ 2π

0 dφ(dσDV CS+BH,↑ + dσDV CS+BH,↓)
,

(38)

where ∆σ = dσ↑ − dσ↓ and ↑ and ↓ signify that the
lepton is polarized along or against its direction of mo-
tion, respectively.

– The charge asymmetry (CA) in the scattering of an
unpolarized probe on an unpolarized target:

CA =
{( ∫ π/2

−π/2
dφ∆dCσDV CS+BH

−
∫ 3π/2

π/2
dφ∆dCσDV CS+BH

)/
(39)

( ∫ 2π

0
dφ(d+σDV CS+BH + d−σDV CS+BH)

)}
,

where ∆dCσ = d+σ − d−σ corresponds to the differ-
ence of the scattering with a positron probe and an
electron probe.
In the small-x limit, required for the dipole approxi-

mation, and at large Q2, AAA and CA are directly pro-
portional to the real part of the DVCS amplitude, and
SSA to the imaginary part of the unpolarised amplitude
(cf. (30,40,43) of [27])7.

7 At large x one also gets a contribution from the polarised
and helicity-flip DVCS amplitudes, H̃1, E1, Ẽ1, which are neg-
ligible in the small x region (cf. (24, 30) of [27])
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Fig. 14. The energy dependence of the photon level DVCS
cross section at fixed Q2 = 4.5 GeV2: FKS (solid line); MFGS
(dashed line)
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Fig. 15. The Q2-dependence of the photon level DVCS cross
section at fixed W = 75 GeV: FKS (solid line); MFGS (dashed
line)

5 Results and conclusions

The Q2 and W dependencies of the DVCS total cross-
section of (30), obtained from our two dipole models, are
compared with the H1 data [2] in Figs. 14, 15. In these
figures, the vertical errors include statistical and system-
atic errors added in quadrature, and the horizontal er-
rors indicate the bin width of the data. In making this
comparison we have used the same value for the slope
parameter, B = 7 GeV−2, as that used by H1 to take
into account the resolution and acceptance of their detec-
tor. It should be emphasized that the uncertainty in B
implies an associated uncertainty in the normalization of
the predictions, which could well be weakly Q2 dependent.
In addition, Donnachie and Dosch [11] have stressed that
the real photon limit provides an important constraint,
since the forward imaginary part can be inferred from fits
to real photoabsorption data using the optical theorem,
and their resulting value for the real photon cross sec-
tion σ(γp → γp) is also shown in Fig. 158. As can be seen,
the consistency between the predictions and experiment is

8 We have actually increased their estimate by 4 % to allow
for the value of β found in the FKS model. This change is much
smaller than the estimated error
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Fig. 16. Compendium of results on asymmetries for fixed x =
10−2, at two values of Q = 2, 3 GeV, accessible in the HERA
kinematic range

very encouraging for the basic features of the dipole mod-
els, despite the large statistical errors and the uncertainty
in the slope parameter. Conversely, the close agreement
between the predictions of the models out to energies well
beyond the HERA region, despite the fact that one imple-
ments saturation effects approximately and one does not,
means that the total cross-section is not a good discrimi-
nator between them. This is not unexpected, since DVCS
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Fig. 17. Compendium of results on asymmetries for fixed
x = 10−4, at two values of Q = 2, 3 GeV, accessible in the
HERA kinematic range. The results for SSA and AAA may be
compared to Fig. 1 of [24] and for CA to Fig. 4a of [27]

is clearly a “softer” process than DIS, due to the presence
of a real photon.

In Figs. 16, 17 we show results for the predicted asym-
metries of (37, 38, 39) resulting from both models to indi-
cate the overall size and spread of predictions expected in
the small-x region (x ∈ [10−2, 10−4]) of HERA kinemat-
ics. The AAA and SSA results are for a positron and we

use HERA kinematics with proton energy Ep = 920 GeV
(i.e. S = 4EeEp ≈ 99, 000 GeV2) to compute the value of
y = (W 2 +Q2)/S.

In conclusion, we observe that both models provide
a good description of the available DVCS cross section
data, without further tuning. We give predictions for the
cross section at higher energies. A measurement of the
asymmetries would allow the predicted phase of DVCS
amplitude for both models to be tested.
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